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Abstract

A stochastic simulation algorithm is presented to calculate parametric derivatives of solutions of a population

balance equation. The dispersed system is approximated by an N -particle stochastic weighted ensemble. The derivatives

are accounted for through infinitesimal deviation of the statistical weights that are recalculated at each coagulation.

Thus, all the parametric derivatives can be calculated along one trajectory of the process, given N sufficiently large. We

use an operator-splitting technique to account for surface growth of the particles. The obtained solution is in good

agreement with the available analytical solutions. As soon as the parametric derivatives are known the gradient-based

methods can be applied to the control and identification of the coagulation process. The extension of the proposed

technique to a multi-dimensional case is straightforward.

� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Sensitivity analysis and inverse problems in population balances have a wide range of applicability in

different technological process such a s grinding systems [1], emulsion polymerization [2], and liquid/liquid

dispersions [3] to mention just a few (for a comprehensive review see [4, Chapter VI]).

The main object of the present investigation is the space-homogeneous Smoluchowski’s coagulation

equation

onðt; x; kÞ
ot

¼ 1

2

Z x

0

Kðx� x0; x0; kÞnðt; x� x0; kÞnðt; x0; kÞdx0 �
Z 1

0

Kðx; x0; kÞnðt; x; kÞnðt; x0; kÞdx0; ð1Þ

where nðt; x; kÞ is the number density of particles that have mass x at the time t. The probability that two

particles with massess x and x0, respectively, coalesce during a small time interval dt is Kðx; x0; kÞdt, where k
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is an unknown (generally speaking, vector) parameter. At the initial moment t ¼ 0 the particles are dis-

tributed according to the initial condition:

nð0; xÞ ¼ n0ðxÞ: ð2Þ

The presence of the undefined parameter k in the kernel of Eq. (1) gives rise to two extremal problems,

namely, optimization and identification. Consider a functional H ½nðt; x; kÞ�, so k can be viewed as a control

parameter that minimizes H :

min
k
ðH ½nðt; x; kÞ�Þ: ð3Þ

A problem which is similar to the above is parameter identification or the inverse problem when the pa-

rameter k has to be extracted from experimental observations. We denote our experimentally obtained

functional H as H exp. The solution of the inverse problem is the parameter k� that minimizes the difference
between the calculated values of H and those observed experimentally, i.e.,

k� ¼ min
k

jjH ½nðt; x; kÞ� � H expjj: ð4Þ

The solution of the above problems is a nontrivial task that is often aided by the self-similar behaviour of

many practically important dispersed systems [4]. In the present study we solve problem (4) by a more

general gradient-search algorithm, where a Monte Carlo method is used for the solution of Eqs. (1) and (2)

and the calculation of the gradient oH=ok. This approach has two important advantages: (i) a Monte Carlo
method easily can be extended to a multidimensional case, and (ii) gradient search is faster than other

methods of mathematical programming. A common method for the calculation of parametric derivatives is

to run the simulation for several values of the parameter and then to apply a finite difference method. The

method is highly sensitive to numerical noise that is absolutely unavoidable in the case of a Monte Carlo

simulation. In the present investigation we formulate the equations for parametric derivatives of the so-

lution and solve this equations together with Eq. (1). This method gives the solution of the equation and its

parametric derivatives simultaneously.

The paper is organized as follows. In Section 2 we represent coagulation as a Markov process for an N -
particle weighted stochastic, system. Section 3 contains a discussion of the applicability of weighted Monte

Carlo methods for the estimation of parametric derivatives and possible ways to reduce dispersion of the

estimation. In Section 4 we apply the obtained method to several model examples and discuss the numerical

results. One of possible extension of the proposed method, namely, coagulation/condensation problem is

treated by an operator-splitting technique.
2. Weighted N-particle system and the corresponding Markov process

In order to proceed further let us reformulate Eq. (1) in terms of mass density. Advantages of this

formulation are discussed in [5], note also, that particle distributions according to their mass are en-

countered in technological applications more frequently than number distributions. The mass density of the

particles that have mass x at a time t is mðt; xÞ ¼ xnðt; xÞ. The total mass of the system is M ¼
R
mdx. In

order to rewrite the collision equation (1) in terms of mass density, we express nðt; xÞ as mðt; xÞ=x, substitute
it into (1) and multiply the equation by x. Note, that if Kðx; x0Þ ¼ 0 for x6 0 or x0 6 0, the limits of inte-

gration in (1) can be extended from �1 to 1. After some algebra we obtain [4,5]:

omðt; x; kÞ
ot

¼
Z

Kðx� x0; x0; kÞ
x0

mðt; x� x0; kÞmðt; x0; kÞdx0 �
Z

Kðx; x0; kÞ
x0

mðt; x; kÞmðt; x0; kÞdx0: ð5Þ
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Since the coagulation kernel is symmetric, i.e., Kðx; x0Þ ¼ Kðx0; xÞ, the factor of 1/2 before the first integral in
Eq. (5) disappears. From the physical point of view it means that coagulation reduces the number of

particles but does not affect their mass. The initial conditions become

mð0; xÞ ¼ m0ðxÞ ¼ xn0ðxÞ: ð6Þ

Consider a stochastic particle system

x1ðtÞ; . . . ; xN ðtÞ;

which approximates the mass density function mðt; xÞ as

mðt; xÞ �
XN
n¼1

wndðx� xnðtÞÞ; ð7Þ

i.e., each particle in the above N -particle system represents a group of identical physical particles with size

xn. The total mass of the nth group is wn and the number of particles in the group is wn=xn. Since the

probability that during a small time interval dt the kth particle will coagulate with one the lth group is
Kðxk; xl; kÞdt, probability that the kth particle will coagulate with any of the lth particles is

pklðkÞdt ¼
Kðxk; xl; kÞwl

xl
dt:

Thus, the coagulation rate of the kth particle is given by summation of the above formula over l. The
formula for the total collision rate reads:

XN
a¼1;b¼1

pabðkÞ ð8Þ

and the collision pair is chosen with the relative probability

pklðkÞPN
a¼1;b¼1 pabðkÞ

: ð9Þ

In the present investigation we use the acceptance–rejection technique similar to that used in [5]. Let us

consider a majorant kernel and majorant weights satisfying

Kðxk; xl; kÞ6 K̂ðxk; xlÞ; w1 6 ŵl; pklðkÞ6 p̂kl ¼ K̂ðxk; xlÞŵl:

The corresponding stochastic particle algorithm reads:

(1) Generate an exponentially distributed time increment s with parameter

XN
a¼1;b¼1

p̂ab: ð10Þ

(2) Choose a pair ðk; lÞ to collide according to the distribution

p̂klPN
a¼1;b¼1 p̂ab

: ð11Þ

(3) Accept the coagulation with probability
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pklðkÞ
p̂kl

; ð12Þ

i.e., xk is replaced by xk þ xl.
(4) Or reject the coagulation and perform a fictitious jump that does not change the size of the colliding

particles with probability

1� pklðkÞ
p̂kl

: ð13Þ

Notably, the number of particles in this algorithm does not change during the calculations. The accep-

tance–rejection method described above is equivalent to the well-known maximum section method [6,7].

The particle ensemble at time t is an approximation of the mass density function mðt; xÞ.
Now, consider a functional of the solution of Eqs. (5) and (6):

Hðt;m; kÞ ¼
Z

mðt; x; kÞhðxÞdx;

where hðxÞ is an integrable function of x. Substitution of Eq. (7) into the above equation gives a Monte

Carlo estimate of the functional H that is averaged over the N -particle ensemble:

Hðt;m; kÞ �
XN
n¼1

wnhðxnðtÞÞ: ð14Þ
3. Calculation of parametric derivative of the solution of the coagulation equation

Let us consider the following formula:

Hðt;m; kþ DkÞ �
XN
n¼1

wnð1þ DkWnÞhðxnðtÞÞ: ð15Þ

Comparison with Eq. (14) reveals that

omðt; x; kÞ
ok

�
XN
n¼1

wnWndðx� xnðtÞÞ; ð16Þ

which can be interpreted as a parametric derivative (in weak sense) of the solution of Eq. (5), and
Wn ¼ ðokwnÞ=wn ¼ ok lnwn. We will refer to a system with weights wnð1þ DkWnÞ; kernel Kðxk; xl; kþ DkÞ and

pklðkþ DkÞ ¼ Kðxk; xl; kþ DkÞwnð1þ DkWnÞ
xl

as the ‘‘disturbed’’ system, while the original system is referred as an ‘‘undisturbed’’ one. The time evolution

of the disturbed system is as follows. Since Eqs. (10) and (11) do not depend on k, the only difference

between the disturbed and undisturbed systems is at the acceptance–rejection step. The coagulation is
accepted with probability



54 A. Vikhansky, M. Kraft / Journal of Computational Physics 200 (2004) 50–59
pklðkþ DkÞ
p̂kl

; ð17Þ

or rejected with probability

1� pklðkþ DkÞ
p̂kl

: ð18Þ

After this step the average contribution of the kth particle to the functional (15) reads:

hðxk þ xlÞwkð1þ DkWkÞ �
pklðkþ DkÞ

p̂kl
þ hðxkÞwkð1þ DkWkÞ � 1

�
� pklðkþ DkÞ

p̂kl

�
:

Expanding the above formula with respect to Dk and keeping the terms up to one OðDkÞ obtain the average

contribution of the kth particle to the functional H :

hðxk þ xlÞwkð1þDkWk þ oklnpÞ�
pklðkþDkÞ

p̂kl
þ hðxkÞwk 1

�
þDk Wk

�
� p

oklnp
p̂� p

��
� 1

�
� pklðkþDkÞ

p̂kl

�
:

Comparison of the above formula with Eqs. (12) and (13) shows that the probabilities of acceptance and

rejection in the disturbed system can be the same as in the undisturbed one, i.e., initially all factors Wk ¼ 0,

the system evolves along the trajectory of the undisturbed system, while at each step (fictitious and non-

fictitious) the factors Wk have to be recalculated as

Wk ¼ Wk þ ok lnðpklÞ ¼ Wk þ ok lnðKÞ þ Wl ð19Þ

if the coagulation is accepted, or as

Wk ¼ Wk � pkl
oklnpkl

p̂kl � pkl
¼ Wk � wlK

ok lnK þ Wl

ŵlK̂ � wlK
; ð20Þ

if the coagulation is rejected. The same procedure can be applied for the calculation of second and higher

order derivatives. As an illustrative example let us consider a coagulation problem with the following

kernel:

Kðx; x0; a; cÞ ¼ ðxx0Þa exp
 

� c
jx1=3 � x01=3j
ðxþ x0Þ1=3

!
: ð21Þ

The vector parameter k is, k ¼ ðc; aÞ. The first part of the kernel (21) is homogeneous with respect to x and
x0 with exponent c ¼ 2a. Kernels with c > 1 are expected to give rise to gelation, i.e., formation of a particle

with mass equal to the mass of the system within a finite time. In the present study we consider only non-

gelling kernels. The exponential part of the kernel prevents coagulation of particles with too different di-

ameters, for example, due to hydrodynamic interaction. The majorant kernel is

K̂ðx; x0Þ ¼ rðx; x0Þa; ð22Þ

where r is a constant that is greater than 1 (we have used r ¼ 1:5–2) in order to avoid the singularity in Eq.

(20). Majorant weights are ŵn ¼ wn. Note that in a general case, the summation in equations (10) and (11) is

a time consuming procedure that requires OðN 2Þ operations. Due to the special structure of the majorant

kernel (22) the summation over the indices can be done independently, i.e.,
P

ðxakxa�1
l Þ ¼ ð

P
xakÞð

P
xa�1
l Þ.

The generalization of the above procedure to other majorant kernels, like sums of products, is straight-

forward. The derivatives of mass-mean size hxi of the particles with respect to the parameters of the
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Fig. 1. Derivative of mean size of the particles with respect to the parameters of coagulation kernel at t ¼ 10. (a) @ < x > =oa; c ¼ 0

(circles) and c ¼ 1 (diamonds); (b) @ < x > =oc; a ¼ 1=3 (circles) and a ¼ 1=6 (diamonds).
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coagulation kernel are presented in Fig. 1. The bold symbols are the values of hxi, and the slopes of the lines

crossing the corresponding points are calculated according to Eqs. (19) and (20). As one can see, the

proposed procedure provides a good estimation for the parametric derivatives of the solution.

Since the total mass of the system does not depend on k, the mean value of Wk is 0. According to Eqs.

(19) and (20),
P

wkWk ¼ 0 only in a statistical sense, while at each moment it deviates significantly from 0.

As a result, the estimation of parametric derivatives based on Eqs. (19) and (20) has a high dispersion.
While for calculation of mass-mean size hxi in the above mentioned example one needs about 100 repe-

titions of the algorithm (10), (13) for N ¼ 100, reliable calculation of parametric derivatives requires up to

104 repetitions.

In order to reduce the statistical error, we modified the steps (12) and (13) as follows. At each coagu-

lation step we create two particles. One has size xk þ xl, weight wkðpklÞ=ðp̂klÞ and factor W that is calculated

according to Eq. (19).

The second particle has size xk, weight wkð1� ððpklÞ=ðp̂klÞÞÞ and factor W that is calculated according to

Eq. (20). The direct calculation shows that

wk
p
p̂
oklnp� wk 1

�
� p
p̂

�
p
oklnp
p̂� p

¼ 0

and
P

wkWk does not change. This procedure leads to an increase in the number of particles in the system.

Thus, number of particles has to be reduced in order to keep the system computationally tractable. This
problem has already been discussed in the context of the weighted particles method for the Boltzmann

equation [8]. The method proposed in [8] is based on clustering. Consider a group of particles that has total

weight �w ¼
P�n

k¼1 wk and a mean size �x ¼ �w�1
P�n

k¼1 wkxk. If the quantity

q ¼
X�n
k¼1

wkðxk � �xÞ2 ð23Þ

is small, the group of particles can be replaced by one particle with w ¼ �w, x ¼ �x, W ¼ �w�1
P�n

k¼1 wkWk. It

was shown in [8] that the effect of this replacement on the accuracy is negligible given N sufficiently large. In

the present investigation we performed this procedure after each step of the algorithm. The pair of particles

that has a minimum or close to minimum value of q has been determined by a random search method, i.e.,

we randomly generated an a priori fixed number ðOðNÞÞ of pairs ðk; lÞ, the pair with minimum q being
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replaced by one particle. Thus,
P

wkWK ¼ 0 identically and this procedure decreases deviation of the es-

timation (16) by orders of magnitude.
4. Results and discussion

4.1. Inverse problems

As soon as the parametric derivatives are known, an efficient gradient search method can be applied to

problems (3) and (4). Our numerical test is as follows. We solve Eq. (1) with initial particles’ masses

uniformly distributed from on ½0; 1� for some ~k ¼ ða; cÞ and calculate the mean diameter of the particles
hDexpi ¼

R
mðxÞDðxÞdx, and its second and third moments hD2

expi ¼
R
mðxÞD2ðxÞdx and

hD3
expi ¼

R
mðxÞD3ðxÞdx, which are referred to as ‘‘experimental’’. Then we solve an identification proce-

dure, i.e., look for the set of parameters k�
!

¼ ða�; c�Þ that minimizes the residual

1

2

X3
i¼1

ðDið~kÞ � Di
expÞ

2
: ð24Þ

Note that an inverse problem is ill-posed [9], a small experimental noise leads to large error in the extracted
parameters. Since a Monte Carlo method by itself is a source of statistical noise, we use the overdetermined

formulation when three measurements are used for identification of only two parameters. We use the

following minimization algorithm, at each iteration ~k is represented as ~kþ D~k, and then

Dið~kÞ ¼ Di ~ðkÞ þ DkloklD
ið~kÞ. Substitution of this formula into (24) and differentiation with respect to ~k

yields the following system of linear algebraic equations with respect to the increment D~k:

X3
m¼1

almDkm ¼ bl; ð25Þ

where

alm ¼
X3
i¼1

oDi

okl

oDi

okm

� �
and bm ¼

X3
i¼1

Di
exp

�
� Dið~kÞ

� oDi

okl
: ð26Þ

We terminate the calculations when three successive iterations do not improve the residual (24). The results

of the calculations are presented in Fig. 2(a). We started the search from different initial points, the points

on the plot represent successive values of the identified parameters, the target point is designated by the

cross. As one can see, the first few iterations approach the target points and then the solution oscillates near
this value, a situation frequently encountered in identification problems.

One of the main advantages of the Monte Carlo method is its ability to treat multi-dimensional problems

without significant complications. In order to demonstrate how the proposed method performs with two

internal coordinates, namely, size and mixture fraction of an admixture, let us consider droplets that

contain an additive. The mass fraction of the admixture in a droplet is denoted by y. We assume that the

admixture decreases the probability of coagulation. The coagulation kernel reads:

Kðx; x0; y; y 0; a; cÞ ¼ ðxx0Þa 1

�
� c

xy þ x0y0

xþ x0

�
;

where 0 < c < 1. We use the same search procedure in order to extract the constants a and c from ‘‘ex-

perimental’’ data. Since we minimize the residual (24), the variable y is a ‘‘shadow’’ variable that is not



0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55
0

0.5

1

1.5

2

α

c

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α

c

(a) (b)
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accessible for direct observation. The results are presented in Fig. 2(b). Although the convergence rate is

not as good as in the one dimensional case, less than 20 iterations are sufficient to determine the unknown

parameters.
4.2. Coagulation/condensation

The problems of simultaneous growth and coagulation of droplets or particles are of high importance
for many dispersed systems. Provided that the particles sizes and other necessary parameters are known at a

time t, the particles distribution at time t þ Dt is calculated by operator-splitting technique [10]. In the first

phase of the algorithm the particles growth, without any collisions occurring, during the time interval Dt.
Sizes of the kth particle and mass of the kth group are determined from the equations of mass transfer:

dxk
dt

¼ F ðxk; kÞ;
dwk

dt
¼ wk

xk

dxk
dt

¼ nkF ðxk; kÞ; ð27Þ

where nk ¼ wk=xk is number of particles in the kth group. In the second splitting step coagulation equations

(1) or (5) are solved during the same interval Dt.
In order to extend the sensitivity analysis on coagulation/condensation problems we use the operator-

splitting method as follows. In the first stage we solve Eq. (27) together with the equation for the parametric

derivative of x with respect to k

d

dt
okxk ¼

oF ðxk; kÞ
oxk

okxk þ
oF ðxk; kÞ

ok
: ð28Þ

In order to describe the change of Wk as the result of mass transfer, we rewrite the second of Eq. (27) as

dðlnwkÞ=dt ¼ dðln xkÞ=dt. Differentiation of this equation with respect to k yields

d

dt
ok lnwk ¼

dWk

dt
¼ d

dt
okxk
xk

: ð29Þ

In the second stage we solve Eq. (5), while the factors Wk are recalculated according to Eqs. (19) and (20). In

this case the derivatives o lnp=ok are calculated as
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o lnpkl

ok
¼ oKðxk; xl; kÞ

ok
þ oKðxk; xl; kÞ

oxk
okxk þ

oKðxk; xl; kÞ
oxl

okxl �
okxl
xl

þ Wl: ð30Þ

The formula for parametric derivative of a functional Hðt;m; kÞ reads:

oHðt;m; kÞ
ok

�
XN
n¼1

wn WnhðxnðtÞÞ
�

þ hðxnðtÞÞ
ox

okxk

�
:

In order to verify our method we compared the numerical predictions with the analytical results available in

the literature [11]. We consider growth of an aerosol that contains both water drops and particles of ice.

Coagulation kernel

Kðx; x0Þ ¼ xþ x0

does not depend on the type of the colliding particles. If an ice particle coagulates with a water droplet, the

resulting particle is an ice particle. Coagulation of two ice particles or two droplets gives ice and droplet,

respectively. Vapor condensation on the kth particle is given by the equation

dxk
dt

¼ cMssxk; ð31Þ

where c is a constant and Mss is the vapor supersaturation. Thus, mass of kth group and vapor concen-

tration evolve as

dwk

dt
¼ cMsswk;

d

dt
Mss ¼ �

X
k¼1

dwk

dt
: ð32Þ

Differentiation of the above equation with respect to c yields the equation for sensitivity derivative of the

vapor concentration

d

dt
ocMss ¼ �

X
k¼1

d

dt
ocwk ¼ �

X
k¼1

d

dt
wkWk:

The time derivatives of ocxk and ocWk are calculated according to Eqs. (28) and (29).
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(circles). The lines correspond to the analytical solution [11]. (a) Parametric derivative of mass l of the liquid phase; (b) parametric

derivative of the number-mean volume hvwi of the droplets.
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Initially, the mass l of the droplets is, l ¼ 0:7, the mass m of the ice particles is, m ¼ 0:3, Mss ¼ 1, both

the droplets and the ice particles are distributed exponentially the number-mean volume hvwi is, hvwi ¼ 1.

The results are shown in Fig. 3. Condensation rate affects the liquid phase through two mechanisms. Di-
rectly, it increases the mass of the droplets, but indirectly the growth of the particles increases the coag-

ulation rate between the droplets and the ice particles and leads to the ‘‘freezing’’ of the water phase.

Initially, the parametric derivative ol=oc is positive, but at the late stages of the process higher growth rate

means higher collision and freezing rate and ol=oc < 0 as one can see in Fig. 3(a). As the supersaturation

Mss approaches 0, the spectrum of the droplet phase is stabilized by the freezing, as the theory predicts, and

the number-mean volume hvwi of the droplets becomes insensitive to c. The proposed method predicts

correctly the parametric sensitivity of the system from the beginning of the process to its final stage.
5. Conclusion

In conclusion, we have presented an weighted Monte Carlo algorithm for the calculation of the deriv-

atives of solution of the Smoluchowski’s coagulation equation with respect to the parameters of the kernel.

According to this approach each particle in the simulation algorithm has a statistical weight, and the

parametric derivatives are represented as infinitesimal deviations of the statistical weights. The solution of

the original problem and all the derivatives are calculated simultaneously. This method can be used for
sensitivity analysis and control and identification of dispersed systems. The numerical predictions are in

good agreement with the analytical results available in the literature. The generalization of this method to

calculation of higher order derivatives as well as to multidimensional cases, to growth, fragmentation and

spatially nonhomogeneous processes is straightforward.
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